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ABSTRACT: The canonical correlation between the (infinite) past and future 

of a stationary time series is shown to be the limit of the canonical 

correlation between the (infinite) past and (finite) future, and 

computation of the latter is reduced to a (generalized) eigenvalue problem 

involving (finite) matrices. This provides a convenient and, essentially, 

finite- dimensional algorithm for computing canonical correlations and 

components of a time series. An upper bound is conjectured for the 

largest canonical correlation. 
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1. Introduction 

For many practical and theoretical problems in time series analysis, 

cf. Akaike (1975), Tsay and Tiao (1985), Pourahmadi (1985), it is of 

interest to know or compute p the canonical or maximal correlation 

be tween the past 

P - [ .  . . I Xt+Xtl', 

F - [Xt+l,Xt+2, * * 1 ' 

and the future 

of a stationary time series CXt3, and the corresponding canonical 

component or the best predictable aspect of future. Using the familiar 

ideas from multivariate analysis, this task, requires computation of 

eigenvalues, eigenvectors and inversion of infinite matrices or 

operators. 

For ARMA processes canonical correlations and components can be 

computed (exactly) by solving linear systems of algebraic equations, cf. 

Helson and Szeg6 (1960) and Yaglom (1983). For general stationary 

processes, Jewel1 et. al. (1983) have given an algorithm for 

computing (approximathg) the canonical correlations as the eigenvalues 

of an infinite-dimensional (Hankel) operator, in the spectral domain. 

In this paper, we provide a time domain algorithm for computing 

(approximating) canonical correlations of a (nondeterministic) 

stationary process, which requires only solving linear system(s) of 

algebraic equations, cf. Yaglom (1965). For instance, in our approach, 

computation of pm, the canonical correlation between the (infinite) past 

P and (finite) future 

ir- 

Fm [xt+l, - - . ( ~ t + m ~ '  , 

requires solving one (generalized) eigenvalue problem for two mxm 
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matrices Gm and rm, cf. Theorem 2.3. 
Our approach relies primarily on the Wold ucomposition of a 

(nondeterministic) stationary process; this makes it possible to reduce 

the genuinely infinite-dimensional problem of computation of pm or p to 

an, essentially, finite-dimensional problem; in addition to its 

computational simplicity, this approach also provides a procedure for 

computing p even when it does not exist as an eigenvalue of an operator, 

cf. Jewell and Bloomfield (1983) and Jewell et. al. (1983). 

In section 2 ,  we develop a procedure for computing the best 

predictable aspect of (finite) future; the main result is Theorem 2.3. 

This result along with a simple fact about geometry of Hilbert spaces are 

used in Section 3 ,  to give an algorithm for computing p and the best 

predictable aspect of the entire future. This procedure is applied to 

the well-known models fitted to the sunspot numbers series; it turns out 

that even for m-4, Pm provides a good approximation for p .  

An interesting and yet open problem in this area is that of finding 

is an upper a sharp upper bound for p ;  we have conjectured that 

bound for p ,  where u ' ~  is the interpolation error of a missing value 

based on the other values of the process. Throughout th i s  paper, we have 

emphasized computation of the largest canonical correlation; other 

canonical correlations and components can be computed by following a 

standard procedure in multivariate analysis, c*f. Theorem 2.3. 

0 ' 2  
11- 

2. Best Predictable Aspect of (Finite) Future 

For many practical and theoretical problems it is of interest to 

find the best predictable aspect of the future of a system; when the 

system is modelled by a stochastic process CXtl, the problem of interest 
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. 4  

can be r e s t a t e d  a s  t h a t  of f ind ing  the b e s t  p red ic tab le  l i n e a r  func t iona l  

of the  fu tu re  va lues  of the  form 

where IDSOD and c 1 , .  . . , cm a r e  (necessar i ly)  unknown; when m - m, ( 2 . 1 )  

should be viewed as the l i m i t  i n  the mean of f i n i t e  l i n e a r  combination s.r< 

I n  genera l ,  t h i s  is a hard problem t o  solve.  

c -  

For t h e  t i m e  being,  w e  dea l  with the  simpler problem of f ind ing  the  

b e s t  l i n e a r  p red ic to r  and p red ic t ion  e r r o r  of X i n  (2 .1)  when m and 

c 1 , .  . e ,  c, a r e  known, and then i n  the next s e c t i o n  w e  show how the  

s o l u t i o n  of t h i s  apparent ly  simpler problem can be employed t o  resolve 

the  more d i f f i c u l t  problem of f ind ing  the b e s t  p red ic t ab le  aspec t  of the  

f u t u r e .  The need f o r  p red ic i ton  of l i n e a r  func t iona ls  of t he  form (2.1), 

with known m and c l ,  . . . ,  cm, a r i s e s  when the  fo recas t e r  is i n t e r e s t e d  not  

only i n  a f o r e c a s t  of ind iv idua l  fu tu re  values  bu t  a l s o  i n  fo recas t  of a 

l i n e a r  combination of m f u t u r e  values and a confidence i n t e r v a l  f o r  i t .  

For example, i f  s a l e s  a r e  recorded monthly, t he  fo recas t e r  might be 

in te res ted  i n  the f o r e c a s t  of next year ' s  t o t a l  sales ( m  - 12, c1 - . . .  I 
c12 - l ) ,  o r  one might be i n t e r e s t e d  i n  fo recas t ing  the  average of some 

f u t u r e  va lues  (c1 - .. .  - cm - l/m), etc. 

Note t h a t  when c1 - . . . - C m - 1  - 0 and Cm - 1, then X - Xt+,,,, and 

the  p red ic t ion  problem of X t + m  can be solved i n  the  t i m e  domain by using 

the  Wold decomposition of CXtl; i n  f a c t ,  with 

*- 

m m 
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representing the Wold decomposition of CXtl, where Cctl is the 

innovation process of CXtl and CVtl a deterministric process uncorrelated 

with Cctl, the best linear predictor of Xt+r is given by 

A aD 

xt+r kzr bkc t+r-k + Vt+r 

and its (mean square) prediction error is 

( 2 . 3 )  

Note that ( 2 . 2 )  also gives rise to the following representation of 

r (7i-jlilj-l,a' the covariance matrix of CXtl: 

where T = [bj-i]i,j-lla with bj - 0 for j < 0 ,  and I'v is the covariance 

matrix of the deterministic process cVt3. As it is expected, the 

prediction problem of the more general linear functional (2.1) also 

hinges on the Wold decomposition of CXtl. Indeed, from (2.1) and ( 2 . 2 )  

we have 
a m  m 
k-0 r-1 r-1 x c ( c Crbr+k-mICt+m-k + C Vt+r, 

m-1 m m 
(k-O k-m r-1 r-1 

+ c ] ( c Crbr+k-m]ct+m-k + CrVt+r, 

A 

from t h i s ,  X the best linear predictor of X based on P is 
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n 

Consider t h e  harmonizable process {X t 8 R) c Lo(P) 2 given by Xt =l eiteZ(d8) t s  

and i ts  spectral bimeasure which is induced by Z ,  i . e eS  
.- - 

F(A,B)'= E Z(A) z(B).  

2 
W e  claim t h a t  t h e  corresponding s p e c t r a l  domain L (P) i n  t h i s  case is notcomplete. 

Ver i f ica t ion .  By our..Eemma t h e r e  exists a nonzero vector  i n  H (--)'which does 
Y 

not have a series representa t ion  as i n  (4). Take one such vec tor  V, Since V 

is 

combination of Y 's;  k < 0 which converges t o  V i n  L (P). 

n c l e a r l y  i n  H (0) t he re  exists a sequence C ak Y-k =V of f i n i t e  linear Y n 
2 
0 

We can write - k 

a 

where t h e  nonzero funct ions f 
n a By our Theorem i n  sec t ion  2 w e  have k' 

are defined on pos i t i ve  in t ege r s  with f "(k) = n n 

I I f n  - f m  II, = I I  vn - vmI1 

Now s i n c e  v converges t o  v and hence is Cauchy so is f However t h i s  

p a r t i c u l a r  sequence f 

f i n  L (P). Because otherwise another appl ica t ion  of theTheorem i n  sec t ion  

2 shows t h a t  f is i n  L (Z) and 

n n' 
2 of func t ions  i n  L (F) does not converge t o  any element n 

2 

1 

Thus ye  see t h a t V  a l s o  converges t o  fdz ,  So I, m 
n 
f dZ == f ( i )  2 ({i)) - E f ( i ) X i  YmiS 

i=o i=o 

which con t r ad ic t s  our choice ofV,  

REMARK 1. Our example shows t h a t  the  main r e s u l t  of C71 claiming t h e  
i - 

completeness of t he  spectral  domain of any mul t iva r i a t e  weakly harmonizable 

process X is f a l s e  even f o r  a un iva r i a t e  s t rongly  harmonizable' process,  t 

. 2. We f e e l  t h a t  t h e  e r r o r  i n  C73 occurs i n  l i n e s  8 and 9 of t he  

second column of page 4612 ,  where the  ex is tence  of a "ce r t a in  pro jec t ion  onto 

a subspace" is asse r t ed  and a re ference  t o  page 33 bf [ 9 3  is.made t o  - 

. 

support i t .  I n  view of t he  r e s u l t s  es tab l i shed  i n  t h i s  note  t h e  r e s u l t s  i n  
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which is a quadratic form whose matrix is the matrix of prediction 

errors. For computational purposes, it is important to note that the 

matrix G, is, indeed, the upper left mxm submatrix of the matrix 

G - u2T'T, (2.8) 

where the (infinite) matrix T is as in (2.5), this provides a simple 

method of computing Gm when the moving average parameters bl,b2, . . .  are 
known or the task of Cholesky factorization of the covariance matrix I' 

is accomplished. In the following rm also stands for the upper left mxm 
submatrix of r .  

The measure of (linear) predictability of any function X is usually 

defined as 

cf. Jewel1 and Bloomfield (1983). 

Next, we summarize some of the previous results. 

Lemma 2.1. Let EXt} be a nondeterministic stationary process with 

covariance function En3 and moving average parameters bo - 1, 

bl,b2,. . . ,X - C crXt+r where m < QD and c1, ..., cm are given real 

constants. Then, with X denoting the best linear predictor of X based 

m 

r-1 
A 

on the infinite past Xt,Xt-l, . . . ,  w e  have 

(a) Var(X-X) - C'Gmc. A 

(b) the measure of (linear) predictability of X is given by 
c'Gm c 
C'rm c * *. X(X) - 1 - 

Remark 2.2. For m-1, the measure of predictability of X - Xt+l has the 
simple form X(Xt+l) - 1 - u2/-yo, cf. Lemma 2.l(b), since u2 - 
expCJlog f(X) dX/27r}, where f(X) is the spectral density of the process, 

it follows that X(Xt+l) can be expressed in terms of the density of the 

process. However, for e l ,  it seems difficult to find expressions for 



X(X) in terms of the density. 

Next, we find the best predictable aspect of the future for a given 

m. In view of Lemma 2.l(b) this amounts to finding c1,. . . ,cm such that 
for X - C crXt+r, X(X) is maximized. The next theorem shows how this 

can be reduced to a standard (generalized) eigenvalue problem. 

m 

r-l 

Theorem 2 . 3 .  Let EXt) be a nondeterministic stationary process and 

X - C c ~ X ~ + ~ ,  for e l  fixed. Then X is the best predictable aspect 

of the m future values Xt+l, . . . ,  Xt+,, if c - [c1 , . . . ,  cm]' satisfies 
m 

r-1 

(G, - Um)c - 0, for some X E R. (2 .9 )  

More precisely, let X i < . .  .<Xk,  (k I m) be the distinct roots of the 

determinantal equation 

det(Gm - XI',) - 0 (2.10) 

and ~(11, ..., c(~) be the corresponding orthonormalized eigenvectors, i.e. 

cii>r,c(j) - 6 i , j .  i S . j - 1 , 2 *  - - ,m. 

Then, Xf-l)-- cii.)Fm. with Fm - [Xt+l,. . . ,Xt+m] ' is the best predictable 
aspect of future with the'measure of predictability 

h- 

and in general X(i) - cti)Fm is the ith best predictable aspect of future 
with measure of predictability given by 



UX(i)> - 1 - Xi. 
Proof. Note that the problem of maximizing X(X) over the variation of c 

is equivalent to minimizing c'Gm c subject to the side condition C'rm c - 1. 
Now, the results follow either from using the standard Lagrangian 

multiplier method, cf. Rao (1973, p. 583), or  a method based on the 

Hilbert-Courant maximization Lemma, cf. Johnson and Wichern (1988, p. 

441) .  I 

For the purpose of computation it is important to note that roots 

of (2.10) are the same as the eigenvalues of the matrix SmGmSh, where Sm 

can be chosen to be either the inverse of the symmetric square root 

of rm or the inverse of the Cholesky factor of rm. In the computation 

that follows we have used the latter, For a given time series data 

set XI, . . . ,  XT, the moving average parameters bl,b2, ... can be estimated 
either by fitting ARMA models to data or factorizing the estimated 

spectral density, cf. Jewel1 et al. (1983). 

with roots and corresponding vectors 

Note that X(2) is actually uncorrelated with Xc,Xt-l, . . .  . 
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i xi C ( i )  

1 
2 
3 
4 

.7291 

.9419 
1.000 
1.000 

[.817, -.703, ,363, -.258]) 
[.552, .71 , ,061, .21 1 )  
[ 0 , 0 , 0 , .9221D 

0 8  0 , ,929, -.109]' 

( c )  For Xt - .216Xt-1 + .36Xt,2 - tt, Var(ct) - 1, m-4, we have 
i xi C( i) 

.810 

.912 
1.000 
1 * 000 

[ .818, -.573, 0 , 0 1; 
[ .499, .736, 0 , 0 1,  
[-.110, ,409, -.511, .952] 
[ .343, -.096, .886, .306]' 

(d) For Xt - .216Xt,1 - tt - .36ct,l, Var(ct) - 1, m-4, we have 

i xi C(i) 

1 
2 
3 
4 

.9756 
1.000 
1.000 
1.000 

[ .976, .351, .126, .43 1 '  
[-.552, -.113, ,975, .148]' 
[-.009, -.001, -.019, .986]' 
[-.214, .94 , .230, -.058]' 

It is interesting and important to note the pattern of zeros in the 

c 's in examples (b) and (c), and explore their relationship with 

those in Tsay and Tiao (1985). 
(i) 

3. Canonical Correlation *- 
It is well-known that there is a close connection between prediction 

(regression) problems and the concept of correlation; the root of this 

phenomenon can be traced to the following simple property of the geometry 

of Hilbert spaces: For N a subspace of a Hilbert space H, and X an 

element of H with P X N denoting its orthogonal projection onto N, we have 
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In this identity, the relationship between the correlation (angle) of X 

X X and PN, and their distance lIX-PNI12 (prediction error) is rather self- 

evident; in the following we shall make deeper use of (an extension of) 

this identity in developing an algorithm for computing pm and p ,  the 

canonical correlation between P and Fm, P and F respectively; which 

allows us to reduce a genuinely infinite-dimensional problem to a finite- 

dimensional problem; for this we need the following two useful lemmas 

which are not necessarily new and their proofs might be around in the 

literature. Due to the importance of these lemmas in our work, in 

Section 4 we provide proofs for these lemmas. 

Lemma 3.1. Let M and N be any two subspaces of L2(n>, the space of 

square integrable random variables. Then, 

furthermore with p(M,N) denoting the above quantity, we have 

p(M1,Nl) I p(M,N1) I p(M,N), for any MiGI4 and N i a ,  that is p ( - ; )  is 

an increasing (set) function. 

Lemma 3 . 2 .  Let CXtl be a stationary process, with P, F, Fm, p and pm as 

before, and Pm - [Xt-m+l,...,Xt], e l .  Then, i - 

(b) p = Jim p(Pm,Fm) - Jim Jim p(P,, Fn). 
m- m* n+= 
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Next, we state and prove the main result of this section. It is 

instructive to compare the result in part (b) with Theorem 1 in Jewell 

and Bloomfield (1983). 

Theorem 3 . 3 .  Let CX,l be a nondeterministic stationary process with 

covariance function Cykl and moving average parameters bo = 1, b11b2, . . .  . 
Then, 

(a) p m ,  the first canonical correlation between the (infinite) past P 

and (finite) future Fm, is given by 

where Xl,m is the smallest root of the determinantal equation (2.10). 

(b) As m-, pm t p ,  in fact, 

P S:P P m  A-iqf Xl,m , 

and the best predictable aspect of the (entire) future F is equal to 

lim X ( 1 ) ,  where X(1) is as in Theorem 2.3. 
m+- 
Proof. Part (a) follows from Lemma 3.1 and Theorem 2.3, by taking N and 

M as the closed linear span of entries of P and Fm, respectively. 

(b) follows from Lemm'a 3.2(a) and Theorem 2.3. I 

Due to the importance of p in many situations, it is desirable to 

find accurate bounds for it, whenever it is not possible to compute its 

exact value. This problem has been studied by Jewell et. al. (1983) and 

some elementary upper bounds for p are given in terms of certain 

components of the spectral density of the process. A sharp lower bound for p 

E F; can be obtained from Lemma 3.2(a) and 3.1 by taking X - - 
*- 

Xt+l 
JG 

P 2 J 1 - 02/70 , cf. Remark 2.2. (3.2) 
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. 
To show that this bound is sharp, note that for an AR(1) process 

Xt - aXt,l + ct, u2 = 1, lalcl, 
1 - we have yo - 1 - a 2  and the bound J 1 - a2/-yo - la1 is attained by p .  It 

is much harder to find a sharp upper bound for p ;  however, motivated by 

(3.2) we conjecture that when p < l ,  then 

where u t 2  is the interpolation error of Xt+l based on CX,; s + t+l3. 

We note that the bound ( 3 . 3 )  is attained for the aforementioned 

AR(1) process, since in this case, by using a result of Kolmogorov (1941), 

we have 

u I 2  - (s f-'(8)dd/2r)'l - 1, 

where f(B) - 11 - aeis1-2 is the spectral density of the AR(1) process, 

A more solid motivation for the bound in ( 3 . 3 )  is the fact that p ( . , - ) ,  

cf. Lemmas 3.1 and 3.2, is an increasing (set) function of its arguments; 

- therefore, replacing N ( P )  by N1 - spCX,; s z t+l3, one arrives at a bound 

of the form 

J 1 - K ~ ' ~ / r ~  , %- 

for p ,  where K is a constant. Thus, the conjecture amounts to showing 

that K - 1. 
Remark 3 . 4 .  The canonical correlation between P and F(k) - (Xt+k, 

Xt+k+l,. . . f, krl fixed, denoted by p(k) , can be also  computed by the 

procedure developed in this paper. In fact, for any m > k, and taking c - 



13 

(0, . . . ,  O,ck+l, . . . ,  cm] one can prove results similar to those in Sections 2 
and 3 for pm-k(k), which is the largest correlation between P and 

[Xk+l, . . . ,  X,]. It is evident that Pm-k(k) -B p(k) as m -D -, cf. Theorem 

the smallest root of 

det(GA.k - X m - k ]  - 0 ,  

where GA,k is the (m-k)x(m-k) matrix obtained from Gm by deleting its 

first k rows and k columns. 

Example 3.5. The well-known sunspot numbers series has been studied by 

many people and various models fitted to the data are given in Table 1, 

cf. Jewell et al. (1983). We have calculated p 4 ,  that is the canonical 

correlation between P and F4, and the corresponding canonical component, 

using the method of Theorem 3.3, see Table 2. These results are very 

close to the results in Table 2 of Jewell et al. (1983) which contains the 

value p for these models; this suggests that the rate of convergence of pm 

to p must be rather fast. For model 2, p4 is far from p reported in 

Jewell et al. (1983), this difference persists even when m is large: it 

should be noted that model 2 represents a nonstationary process, and it 

might be that for such processes our approximation may not work well as 

far as compution of p is concerned. Despite this, the canonical component 

for model 2 is almost the same as that for model 1. 
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b . 

Table 1 

Model Source 

1 Xt - 1.34Xt-1 + .65Xt,2 tt Yule, Box-Jenkins 

4 xt - 1.57Xt-1 + 1.02Xt-2 - .21xt-3 = Ct Box- Jenkins 

5 Xt - 1.42Xt-1 + .72Xt,2 tt - -15tt-l Phadke and Wu 

6 Xt - 1.25Xt-1 + .54Xt,2 - .19Xt,3 Ct Morris, Schaerf 

Table 2 

Canonical Component 2 
p4 Model 

1 .8566 Xt - .36Xt+l 

2 .99 Xt - .38Xt+l 

3 .8602 Xt - .268Xt+1 - .107Xt+2 
4 .9149 ’ Xt - .474Xt+1 - .O82Xt+2 
5 .a476 Xt - .296Xt+l - .O44Xt+2 
6 .8676 Xt - .409Xt+1 + .126Xt+2 

4. Proofs of the Lemmas 
i- 

In this section we provide proofs of Lemmas 3.1 and 3.2. 

Proof of Lemma 3.1. It is obvious that 

X CCorr(X, PN); X E MI C CCorr(X,Y); X E M I  Y E N}, 



and therefore, 
X ICorr(X, PN)l 4 ;% ICorr(X,Y)l. 

YEN 
;% 

A l s o ,  for any X E M we have from (3.1) that 
X ICorr(X,Y)I 5 ICorr(X, PN)I, for all Y E N, 

and thus, .. 

Now, from (1) and ( 2 ) ,  we get that 

YEN 

For any X E M we have 

E M with llYll - 1; furtehrmore, f r o m  (3.1) we m where Y - 
have 

thus 
i- 

or equivalently, 
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The desired result, now, follows from ( 3 )  and ( 4 ) .  I 

Proof of Lemma 3.2: The sequence CpmI is bounded and nondecreasing, 

thus it is convergent and, in fact, 

A l s o ,  since the linear span of F, is a subset of that of F, we have 

pm 5 p ,  for all m 2 1, 

and therefore, 

Jim pm 5 p .  
m 

To establish equalitly in (2 ) ,  note that for any two finite linear 
n m 

combinations X - C akXt,k, Y - C bkXt+k, we have 
k-0 k-1 

By taking supremum of both sides of ( 3 ) ,  over all X and Y as above, 

we arrive at 

The desired result, now, follows from (l), ( 2 )  and (4). Proof of (b) is 

similar to (a). 
i- 



References 

h i k e ,  H. (1975). Markovian representation of stochastic processes by 
canonical variables. SIAM J. Control 13, 162-173. 

Helson, H., Szeg6, G. (1960). A problem in prediction theory. Ann. Mat. 
Pura. Appl. - 51, 107-138. 

Jewell, N.P., Bloomfield, P., Bartmann, F.C. (1983). Canonical 
correlations of past and future for time series: Bounds and 
computation. Ann. Statist. 11, 848-855. 

Jewell, N.P., Bloomfield, P. (1983). Canonical correlations of past 
and future for time series: Definitions and theory. Ann. Statist. 
- 11, 837-847. 

Johnson, R.A., Wichern, D.W. (1988). Applied Multivariate Statistical 
Analysis. Prentice Hall, New Jersey. 

Piccolo, D., Tunnicliffe Wilson, G. (1984). A unified approach to ARMA 
model identification and preliminary estimation. J. of Time Series 
Analysis, 5, 183-204. 

Pourahmadi, M. (1985). A matricial extension of the Helson-Szeg6 theorem 
and its applications in multivariate prediction. J. of Multivariate 
Analysis, 16, 265-275. 

Rao, C.R. (1973). Linear Statistical Inference and Its Applications. 
John Wiley & Sons, New York. 

Tsay, R.S., Tiao, G.C. (1985). Use of canonical analysis in time series model 
identification. Biometrika 72, 299-315. 

Yaglom, A.M. (1965). Stationary Gaussian processes satisfying the strong 
mixing condition and best predictable functionals. 
Seminar of the Statistical Laboratory, University of California, 
Berkeley, 1963, 241-252. Springer-Verlag, New York. 

Proc, Int. Research 




